超高能重离子反应——核物理学的前沿

蔡勖

(华中师范大学粒子物理研究所)

[摘要] 本文援引李政道先生的观点,简要综述了本世纪末物理学中的两大新的疑难:对称性失踪和夸克禁闭;分析了超高能重离子反应与它们的关系;介绍了这个核物理学前沿的国际动态和国内现状。

最近一届的世界核物理大会上,首先安排了三个引人注目的特邀报告,除了一个是"太阳中微子"的内容外,李政道先生的"破缺对称性与物理真空"[1],欧洲核子研究中心的 LHC/AL-ICE 实验国际合作组负责人 J. Schukraft 的"超高能重离子碰撞:探寻夸克-胶子等离子体"[2],这两个报告的核心都集中到 90 年代核物理学的前沿——超高能重离子反应。

重离子反应(又称核-核碰撞),目前仍以固定靶实验为主,一般按射弹核的入射能量分为低能、中能、高能和超高能四个能区。作为核物理学前沿的超高能区(又称超相对论性),通常指的是大于每核子 10 GeV 的能量范围。由于这个能区与粒子物理学的前沿密切相关,学科交叉,在粒子物理学的有关文献中,其专业术语常采用高能(或相对论性)。

人们知道,上个世纪末,有两大物理学的疑难:一个是光速不变(迈克尔逊实验,1887年), 另一个是波粒二象(普朗克公式,1900年),几乎冲垮了整个经典物理学的宏伟大厦。而这两大 疑难的解决,前一个是爱因斯坦的相对论,后一个是波尔、海森堡等的量子力学,使人类对于时 间、空间、能量和物质结构本身的理解,发生了革命性的转变,导致了构成现代工业、现代经济 的高科学技术基础的现代物理学的发展。

现在,本世纪结束前的最后几年,物理学又面临了两大新的疑难:一个是对称性失踪,另一个是夸克禁闭。

对称性失踪可能暗示存在着一种目前完全未知的基本力。由于所有物质粒子的质量都造成这种对称性的破缺,所以关于这种新的基本力的了解,将使人类揭开质量本身的性质。根据目前理论的推测,物理规律依然保持其对称性,只是物理真空不保持(专业术语称为"自发对称性破缺机制"),而物理真空的激发将会导致一种新的粒子——希格斯子的产生。原计划在美国德克萨斯州建造的超导超级对撞机(SSC)是当今世界的最大加速器,周长87公里,其目的就是要寻找希格斯子。由于最近美国国会对这项计划的否决,可能使该疑难的解决至少推迟一代人之久。

夸克是现有物理学理论和实验所认定的物质结构的最小的基本砖块。然而一直到今天,人 类所能够达到的最高能量的大型加速器实验中,都没有看到自由的夸克。迫于这种现实,有关

本文于 1993 年 11 月 12 日收到.

强作用力的理论只得赋于夸克一种奇特的性质,即夸克被强作用力禁闭在质子、中子这样的强子内。当质子、中子构成原子核时,强作用力的剩余部分以核力的形式出现,蕴藏了巨大核能。为什么夸克被禁闭?目前的理论推测,存在一种反屏蔽的QCD真空,使强子成为禁闭夸克的"口袋"。目前,在美国布鲁克海汶国家实验室(BNL)建造的相对论性重离子对撞机(RHIC),还有拟在西欧子研究中心(CERN)的大型正负电子对撞机(LEP)隧道上改建的大型强子对撞机(LHC),其周长分别为4和27公里,质心系能量可分别达到每核子0.2和6TeV。将于下世纪到来前后,在这两台运行的大型加速器上进行超高能重离子反应的实验,有可能揭示出QCD真空的起源,导致夸克禁闭疑难的解决。正如李政道先生所指出的,本世纪末物理学两大新疑难的挑战,都依赖于对物理真空的认识。而问题解决的唯一道路,就是要用实验手段去激发真空。大型加速器上的超高能重离子反应提供了这种可能性。

超高能重离子反应,已引起世界各国科学家的广泛注意。最近刚结束的第 10 届国际相对论性核-核碰撞(93 夸克物质)会议^[3],综合了自 80 年代中期以来,在 BNL 交变梯度同步加速器(AGS)和 CERN 超级质子同步加速器(SPS)上进行的超高能重离子反应的固定靶的各种实验。为了参考方便起见,将参与这些实验的国际合作组列举如下:

美国 BNL/AGS(14.6 GeV/A 的氧、硅;11.6 GeV/A 的金离子束流)

E866(E859, E802), E891(E810), E877(E814), E878(E858); E882(E793), E804, E883 (E806), E868(E808, KLM), E863(E815), E862(E819), E844(E825), E826, E875(E847), E(869).

西欧 CERN/SPS(60 GeV/A 的氧,200 GeV/A 的氧、硫离子束流)

NA34/3(NA34/2, HELIOS), NA44, NA45, NA49(NA35), NA36, NA50(NA38), NA52, WA98(WA94, WA80), WA97(WA94, WA85); EMU01至EMU10, NA40, NA41, WA87。

1994/95 年,将在 CERN/SPS 进行 160 GeV/A 的铅离子束流运行的实验,这将是本世纪内束流能量最高、核最重的最后的固定靶实验。已计划进行这次实验的国际合作组有 NA44, NA45,NA49,NA50,NA52,WA98,WA97,EMU11 至 EMU14。

在国内,采用核乳胶探测器进行高能核实验的研究,已有长期的历史。早在 50 年代初,我国原子能研究所就开始研制核乳胶,进行核物理实验,并于 50 年代末,参加了在原苏联的杜布纳联合核子研究所进行的乳胶高能核实验。1983 年,我国成立了全国核乳胶高能实验协作组,其中包括山西师范大学、湖南教育学院、中科院干部管理学院、中国原子能研究院、中科院高能物理所和华中师范大学等单位,研究超高能宇宙线重离子与乳胶核的作用。其后,在国家自然科学基金委员会的支持下,我国一些单位参加了 BNL/AGS 上 E863(E815)和 CERN/SPS 上 EMU-01 的加速器实验,这是我国目前在能量大于 10 GeV/A 的能区进行的超高能重离子反应实验的国际合作。他们还将参加 160 GeV/A 铅离子束流运行的 EMU-12 实验的国际合作。同时,我国哈尔滨工业大学等,也参加了高能的重离子反应实验的国际合作。

正在建造的 BNL/RHIC 对撞机上,已成立了四个进行超高能重离子反应对撞实验的国际合作组:STAR,PHENIX,PHOBOS 和 FS。其中,PHENIX 合作组包含有中国原子能科学研究院、中科院高能物理所、中科院兰州近代物理所和北京大学等单位。计划中的 CERN/LHC 对撞机上,成立了一个超高能重离子反应对撞实验的国际合作组 ALICE,它目前包含有中国原子能科学研究院和华中师范大学。

我国有关研究单位参加以上国际合作组,为我国在现代物理学的前沿占有一席之地,创造了必要条件。现代科学是人类共同劳动的成果,其本身是无国界的。随着现代化大科学时代的到来,像超高能重离子反应这样的基础研究,已不是一个国家所能独立完成的,而需要各国科学家的广泛交流与合作,需要各国政府在人力财力上的不懈支持。先进的科学实验手段是现代化大科学的一个重要标志。近代的自然科学理论,是自从有了实验科学之后才真正形成的。许多重大的基础研究和高科技领域之所以取得突破性的发现和进展,首先就是由于有了新的实验手段。随着核物理前沿上更深层次的发展,像加速器这样的实验越来越大型、精密和昂贵,对人力财力的需求越来越庞大。在国际竞争中,谁掌握新技术、新思想快,谁就能在前沿领域中领先。通过国际合作,可以利用国外已有的实验条件,博采各国所长,提高我国的研究起点,跳跃某些阶段,而加快基础研究的步伐。因此,把握住当前在核物理前沿领域中我国已经进入的有利条件,抓住机遇,就显得格外重要。

参考文献

- [1] T. D. Lee, Broken symmetries and the physical vacuum, Proceedings of the International Nuclear physics conference, Wiesbaden, Germany, July 26—August 1, 1992; Nuclear Physics, A553 (1993) 3c.
- [2] J. Schukraft, Ultra-relativistic heavy-ion collisions: Searching for the quark-gluon plasma, 同[1]; Nuclear Physics, A553 (1993) 31c.
- [3] Proceedings of the 10th International Conference on Ultra-Relativistic Nucleus-Nucleus Collisions, Quark Matter'93, June 20-24, 1993, Borlange, Sweden, to be published in a special issue of Nucl. Phys. A.
- [4] 蔡勖,相对论性核-核碰撞的理论与核胶实验研究,中国科学基金,6,1(1992),46。

FRONTIER OF NUCLEAR PHYSICS: ULTRA-RELATIVISTIC HEAVY-ION REACTIONS

Cai Xu

(Institute of Particle Physics, Hua-Zhong Normal University)

Abstract

Two outstanding puzzles at the end of this century, missing symmetries and unseen quarks, echoed from Prof. T. D. Lee's observation are briefly reviewed and their relation to the ultra-relativistic heavy-ion reactions is analysed. The international tendency and internal status on this frontier of nuclear physics are presented.